Familial Parkinson's Disease Mutant E46K α-Synuclein Localizes to Membranous Structures, Forms Aggregates, and Induces Toxicity in Yeast Models
نویسندگان
چکیده
In Parkinson's disease (PD), midbrain dopaminergic neuronal death is linked to the accumulation of aggregated α-synuclein. The familial PD mutant form of α-synuclein, E46K, has not been thoroughly evaluated yet in an organismal model system. Here, we report that E46K resembled wild-type (WT) α-synuclein in Saccharomyces cerevisiae in that it predominantly localized to the plasma membrane, and it did not induce significant toxicity or accumulation. In contrast, in Schizosaccharomyces pombe, E46K did not associate with the plasma membrane. Instead, in one strain, it extensively aggregated in the cytoplasm and was as toxic as WT. Remarkably, in another strain, E46K extensively associated with the endomembrane system and was more toxic than WT. Our studies recapitulate and extend aggregation and phospholipid membrane association properties of E46K previously observed in vitro and cell culture. Furthermore, it supports the notion that E46K generates toxicity partly due to increased association with endomembrane systems within cells.
منابع مشابه
Molecular Determinant of α-Synuclein Pathotoxicity in Yeast Models
Parkinson disease (PD) is an incurable neurodegenerative disorder linked to the misfolding and aggregation of α-synuclein protein in dying neurons. Several molecular features of α-synuclein that appear to contribute to its properties are the familial mutant E46K, serine phosphorylation, and hydrophobic residues, but their exact role is unclear. I used two yeast models to examine how the E46K mu...
متن کاملNewly Discovered α-Synuclein Familial Mutant E46K and Key Phosphorylation and Nitrosylation-Deficient Mutants are Toxic to Yeast
Parkinson’s disease is a neurodegenerative disorder that is caused by the loss of dopaminergic neurons in the substantia nigra. Misfolding of αsynuclein is thought to cause this selective cell death. In our α-synuclein yeast overexpression model, we previously demonstrated that α synuclein, is non-toxic to yeast, runs 8-10 kDa higher on protein gels and aggregates minimally in vivo. Recently, a...
متن کاملCharacterization of Familial Mutants and Splice Variants of Parkinson’s Disease Pro- tein α- Synuclein in Yeast Models
The misfolding of the protein α-synuclein is a major contributor to Parkinson’s disease (PD). Three mutations (A53T, A30P and E46K) cause familial PD, and three newly discovered spliced variant forms of the protein (syn-126, syn-112, and syn-98) are also found in many PD patients. Little is known about whether these familial mutants can influence each other’s contributing properties and whether...
متن کاملInsight into Familial and Sporadic Parkinson’s Disease: -Synuclein Mutant Analysis in a Fission Yeast Model
Parkinson’s disease (PD) is the second most common neurodegenerative disease, affecting six million people worldwide. It results from the specific loss of substantia nigra dopaminergic neurons, which accumulate large filamentous structures called Lewy bodies composed mostly of one misfolded and aggregated protein called -synuclein. The aggregation and membrane phospholipid binding ability of -s...
متن کاملParkinson disease mutant E46K enhances α-synuclein phosphorylation in mammalian cell lines, in yeast, and in vivo.
Although α-synuclein (α-syn) phosphorylation has been considered as a hallmark of sporadic and familial Parkinson disease (PD), little is known about the effect of PD-linked mutations on α-syn phosphorylation. In this study, we investigated the effects of the A30P, E46K, and A53T PD-linked mutations on α-syn phosphorylation at residues Ser-87 and Ser-129. Although the A30P and A53T mutants slig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2011 شماره
صفحات -
تاریخ انتشار 2011